学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告二十七:动力系统的复杂性主题系列报告三则

时间:2020-11-03 作者: 点击数:

学术报告信息(一)

报告题目Topological intricacy and average sample complexity

报告时间:2020年11月5日(星期四)14:00

报告平台:腾讯会议(线上) ID: 535 791 363

:涂思铭 副教授

工作单位:中山大学

举办单位:金沙集团1862cc成色

报告简介

In 2018, Petersen and Wilson introduced the notion of dynamical intricacy and average sample complexity for dynamical systems of Z-action, based on past works on the notion of intricacy in the research of brain network and probability theory. In this talk, I will introduce the motivation and properties about the two notions in different area, and also I will talk about a recent joint work with Jie Li about generalizing the two notions in the amenable group action setting.

报告人简介

涂思铭,2014年博士毕业于中国科学技术大学,随后在智利大学数学建模中心从事博士后工作。现为中山大学金沙集团1862cc成色(珠海)副教授。主要研究方向是拓扑动力系统与遍历理论。主持和参与多项国家自然科学基金。

学术报告信息(二)

报告题目Semi-horseshoes and partially hyperbolic diffeomorphisms

报告时间:2020年11月5日(星期四)15:00

报告平台:腾讯会议(线上) ID: 535 791 363

:许雷叶 副教授

工作单位:中国科学技术大学

举办单位:金沙集团1862cc成色

报告简介

A topological dynamical system is said to have a semi-horseshoe if there exists a subsystem of its iterates which is topologically semi-conjugate to the full shift. It is shown that some classes of dynamical systems, including partially hyperbolic diffeomorphisms and automorphisms of compact metric abelian groups with positive topological entropy, have semi-horseshoes. The versions for attractors and local $C^1$-diffeomorphisms of the above result are also obtained.

报告人简介

许雷叶,男,理学博士,从事拓扑动力系统与遍历理论的研究。主持和参与多项国家自然科学基金,在国内外重要学术期刊发表多篇学术论文。

学术报告信息(三)

报告题目Formulae of conditional entropy and some deformations

报告时间:2020年11月5日(星期四)16:00

报告平台:腾讯会议(线上) ID: 535 791 363

:周小敏 博士

工作单位:中国科学技术大学

举办单位:金沙集团1862cc成色

报告简介

We investigate conditional entropy with respect to monotonic (invariant, decreasing or increasing) measurable partitions and in particular we obtain Brin-Katok’s and Katok’s entropy formulae for conditional entropy with respect to invariant, decreasing and a large class of increasing partitions. At last we introduce some deformations of these formulae under some conditions.

报告人简介

周小敏,2017年博士毕业于中国科学技术大学,2017年起在华中科技大学工作,主要研究方向是动力系统熵理论,主持和参与多项国家自然科学基金,在国内外重要学术期刊发表多篇学术论文。

上一篇:学术报告二十八:岳勤 — Self-dual Codes, LCD Codes and Self-orthogonal Codes in Dihedral Group Algebras

下一篇:学术报告二十六:夏春光 —Representations of Lie conformal algebras of Block type and extensions