报告时间:2022年7月8日(星期五)14:30-15:30
报告地点:腾讯会议:990101182
报 告 人:陈露 副研究员
工作单位:北京理工大学
举办单位:金沙集团1862cc成色
报告简介:Trudinger-Moser inequalities as the border line case of Sobolev inequalities have important applications in the fields of geometric analysis and PDEs. In this talk, I will give a survey about the history of Trudinger-Moser inequality and its important role in prescribing curvature problem and Schrodinger quation with the critical exponential growth. Then I will present some new progress on sharp Trudinger-Moser inequalities including Trudinger-Moser involving degenerate potential and Trudinger-Moser inequalities on complete non-compact manifold, etc. Finally, Existence and non-existence for extremals of critical Trudinger-Moser inequality on bounded domain and whole space will also be discussed. The talk is based on joint work with G. Lu and M.Zhu.
报告人简介:
陈露,北京理工大学数学与统计学院副研究员,2018年博士毕业于北京师范大学,2019年在意大利访问比萨高师Malchiodi教授。长期致力于研究几何泛函不等式及非线性椭圆方程的研究,相关结果发表于Adv. Math, Trans. AMS, J. Funct. Anal, Calc. Var PDEs,中国科学等国际重要学术期刊。