报告时间:2022年8月19日(星期五)14:00-
报告地点:翡翠科教楼B1710
报 告 人:孙笑涛 教授
工作单位:天津大学
举办单位:金沙集团1862cc成色
报告简介:
线性代数概念众多,课程设计均面临如下问题: 如何才能纲举目张,使各种概念自然出现?如何处理课程中定理的证明,使定理成立的理由不被矩阵,行列式技巧掩盖?本次报告将汇报本人在天津大学教授该课程的实践和体会。
报告人简介:
孙笑涛,天津大学金沙集团1862cc成色院长,主要从事代数几何的研究,研究方向为模空间理论,包括曲线上向量丛模空间的退化等。2000年获得国家杰出青年基金资助,2012年获国家自然科学二等奖,2013年获第十四届陈省身数学奖。
主要学术成绩包括:发现并证明 Frobenius同态与稳定向量丛之间的重要联系;证明任意秩广义theta函数的分解定理和Seshadri-Nagaraj猜想;证明模空间极小有理曲线与Hecke曲线的等价性;与人合作证明Gieseker关于平展基本群与D-模关系的猜想,建立特征p代数曲面的Miyaoka-Yau型不等式等。