报告时间:2024年06月20日(星期四)上午:9:30-10:30
报告地点:翡翠科教楼B1710
报告人: 尚士魁 副教授
工作地点:上海大学
举办单位:金沙集团1862cc成色
报告摘要:
Let $k$ be a field of characteristic $0$. We introduce a pair of adjoint functors, Allison-Benkart-Gao functor $\AG$ and Berman-Moody functor $\BM$, between the category of non-unital alternative algebras over $k$ and the category $\LieR$ of Lie algebras with appropriate $sl_3(k)$-module structures. Surprisingly, when $A$ is a non-unital alternative algebra, the Allison-Benkart-Gao Lie algebra $\AG(A)$ is different from the more well-known Steinberg Lie algebra $st_3(A)$. Next, let $A(D)$ be the free (non-unit) alternative algebra generated by $D$ elements and $\innAD$ the inner derivation algebra of $A(D)$. A conjecture on the homology of $H_r(\AGAD)$ is proposed. Let $A(D)_n$(resp. $\innAD_n$) be the degree $n$ component of $A(D)_n$(resp. $\innAD_n$). The previous conjecture implies another conjecture on the dimensions on $A(D)_n$ and $\text{Inner} A(D)_n$. We also give some evidences to support the these conjectures.
报告人简介:
尚士魁,上海大学副教授,毕业于中国科学技术大学。后在中科院信工所作特聘研究员,主要研究兴趣量子群、量子计算,后量子密码等。报告人已在J. Algebra, Contemp. Math., Comm. Algebra等发表论文多篇。曾多次担任全国大学生数学密码挑战赛出题专家和评审专家。